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Cluster Algorithms for Anisotropic Quantum 
Spin Models 
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We present cluster Monte Carlo algorithms for the X Y Z  quantum spin models. 
In the special case of S = 1/2, the new algorithm can be viewed as a cluster algo- 
rithm for the 8-vertex model. As an example, we study the S = 1/2 X Y  model in 
two dimensions with a representation in which the quantization axis lies in the 
easy plane. We find that the numerical autocorrelation time for the cluster algo- 
rithm remains of the order of unity and does not show any significant 
dependence on the temperature, the system size, or the Trotter number. On the 
other hand, the autocorrelation time for the conventional algorithm strongly 
depends on these parameters and can be very large. The use of improved 
estimators for thermodynamic averages further enhances the efficiency of the 
new algorithms. 

KEY WORDS: Quantum Monte Carlo; cluster algorithm; X Y Z  model, 
Heisenberg model; X Y  model. 

1. INTRODUCTION 

Recently, researchers have emphasized the importance of global updat ing 
in Monte  Carlo methods. Especially for the critical phenomena  and low- 
temperature behavior  of models for condensed matter, the difficulty due to 
diverging numerical  autocorrelat ion times is universal. A cluster algori thm 
based on the For tu in -Kas te leyn  (FK)  t 'l percolation representation was 
proposed by Swendsen and Wang  t-'~ and was proven to be very powerful 
in reducing the autocorrelat ion time. This cluster algori thm is a successful 
example of a ~global updat ing  Monte  Carlo method. However, the 
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Swendsen-Wang (SW) algorithm can apply only to the Ising model and its 
generalization is not straightforward. 

In our previous paper, (3) to which we will refer as I, we generalized 
the FK representation to the X X Z  quantum spin systems. We also 
demonstrated (4) that the new cluster algorithm can be faster than the con- 
ventional algorithm by several orders of magnitude. In the special case of 
spin models with S = 1/2, the new algorithms are equivalent to the cluster 
algorithms for the 6-vertex model proposed in ref. 5 because the S =  I/2 
quantum X X Z  model can be mapped to a 6-vertex model. A similar cluster 
algorithm was developed also for the Hubbard model. ~6~ It is shown in I 
that the new cluster representation analogous to the FK representation is 
available to any model described by the X X Z  Hamiltonian regardless of 
the magnitude of the spins. 

In this paper, we discuss the details of the FK-type representation and 
cluster algorithms for the quantum spin models omitted in I, namely, 
models without the rotational symmetry with respect to the quantization 
axis. Therefore, this paper, together with I, completes the generalization of 
the SW-type cluster algorithm to the most general quantum spin 
Hamiltonian, i.e., the X Y Z  model Hamiltonian. 

In order to show the potential efficiency of the new algorithm, we per- 
formed simulations of the X Y  model taking the quantization axis in the 
easy plane. 

2. THE OUTLINE OF THE S I M U L A T I O N  

The X Y Z  Hamiltonian we consider is 

'afro= - Z (Jo + J,.S;"S)',+ J:,S~'S~' + J._SjS~), 
(i . j)  

S ~ = S ( S +  1) (2.1) 

We do not assume here any special geometrical feature for the underlying 
lattice. The discussion given below holds for any lattice. Although the con- 
stant J0 is physically irrelevant, we include it to make the subsequent dis- 
cussion look simpler. Here, we assumed that the coupling constants do not 
depend on the site i or j. The generalization to inhomogeneous cases, 
however, is straightforward. If J.,. = J:,, we call the model an X X Z  model. 
The algorithms for the X Y Z  models described in this paper are essentially 
the same as the ones for the X X Z  model in I, except that we use different 
ways (i.e., local graphs) for breaking up plaquettes and different 
probabilities for the graph assignment (i.e., labeling probabilities). For 
completeness, we will briefly repeat the mathematical background of the 
simulation. 
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First, we "divide" each spin whose magnitude is S into 2S Pauli 
matrices: 

2 S  

$7= �89 ~ a ,~ ,  (o~=x,y,z) (2.2) 
, u = l  

Note that we are expanding the Hilbert space by replacing the original 
(2S + 1 )-dimensional spin space for each spin by the 2-'S-dimensional space 
for 2S Pauli spins each of which corresponds to a spin of magnitude 1/2. 
In particular, for most states in the new Hilbert space, S ~ r  1) at 
some lattice point i. Therefore, such states should be excluded in comput- 
ing the partition function. 

As the representation basis for this new Hilbert space, we take 
simultaneous eigenfunctions of the z-components of all the Pauli matrices. 
We designate these basis vectors with the symbol n~. The symbol n~, there- 
fore, stands for a set of 2SN one-bit variables, where N is the total number 
of lattice points in the original lattice. Then, the partition function of the 
original problem can be written as 

Z = ~  (n,[  P e - P ~ P  in,)  (2.3) 
nl 

Here, /5 is the projection operator to the subspace in which S~ = S(S+ 1) 
for all i. 

In order to evaluate each term in (2.3), we have to compute the matrix 
elements of the Boltzmann operator multiplied by the projection operator. 
This task is, however, practically impossible for large systems. Therefore, 
we usually use Suzuki-Trotter decomposition 17~ to map the problem into a 
classical problem. Accordingly, the lattice on which we will work is not the 
original lattice on which the quantum problem is defined. Instead, we will 
consider many layers, each of which is geometrically equivalent to the 
original lattice, and will take this set of layers as a hyperlattice which has 
dimension one greater than the original dimension. In what follows we call 
the hyperlattice simply the lattice. We specify a lattice point in this hyper- 
lattice by a set of two indices (k, i), where i specifies the lattice point in the 
original lattice and k specifies the layer to which the point belongs. Since 
2SN one-bit variables are defined on each layer, the state of the system is 
described by 2SMN one-bit variables, where M is the number of layers. To 
make it easier to. visualize the situation, we imagine that each of these one- 
bit variables is defined on a vertex. In other words, 2S vertices are 
associated with each lattice point. We specify a vertex by three indices, e.g., 
(k, i, p). We write the whole set of variables as n. The hyperlattice can also 
be viewed as a collection of "shaded" plaquettes. Here a plaquette is a set 
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of four lattice points (k, i), (k,j), ( k +  1, i), and ( k +  1,j), where i and j are 
nearest neighbors in the original lattice. A plaquette is also a set of 8S ver- 
tices. The use of the word "shaded" originated in the fact that plaquettes 
on which the four-body interactions are defined are shaded or hatched in 
almost all the previous pictorial representations of the hyperlattice to dis- 
tinguish them from other plaquettes each of which is merely a set of four 
nearest neighbor lattice points In what follows, we call a "shaded" pla- 
quette simply a plaquette. Now, our problem can be written as 

Z = ~ r [  sgn(n(p)) w(n(p)) (2.4) 
n p 

where the product is taken over the set of plaquettes and n(p) is the subset 
of n whose elements are included in the plaquette p. Namely, for a pla- 
quette p = {(k, i), (k,j), (k + I, i), (k + 1,j)}, 

n(p) = {n(k.;" ~), n ( k ,  i, 2 ) , . . .  , n ( k ,  i, 2 s )  , n ( k , j ,  2) , . . .  , n(k, j ,  2S) , 

n l k +  1. i. 1),  n(k-I- I. i. 2)~"'~ n ( k +  I, i, 2S) ,  n i k +  I.j. 1)~ 

n ( k +  l,j, 2) . . . . .  n l ~ +  l.j._~s)} (2.5) 

The weight w(n(p)) and sgn(n(p)) are the absolute value and the sign of 
the local Boltzmann weight, respectively. Here, the local Boltzmann weight 
of the classical problem is a matrix element of an operator /5(expA)/~, 
where 1'/ is defined by 

-- ~ .~,. ~ (2.6) 
tt, v 

A,,.v= Ko + K,.a~.~,aj~v + Kytr~i,,aJlv + K:tr~.,,tr}.v (2.7) 

The constants Ks (0~ = x, y, z) in general depend on the plaquette and are 
related to the coupling constants J~ in such a way that the sum of K~'s for 
all plaquettes with which both i and j are associated equals flJ~, where fl 
is the inverse temperature. 

In I, we argued that once we obtain a set of coefficients v(g)>10 that 
satisfy 

w(n(p)) = ~ v(g) A(n(p), g) (2.8) 
g ~ F  

we can obtain a cluster algorithm The resulting algorithm is characterized 
by the probability for the graph assignment 

p(g [ n(p)) = v(g) A(n(p))/w(n(p)) (2.9) 
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In (2.8), F is a set of graphs which depends on the magnitude of spins and 
the anisotropy of the model. 

The graph g is defined on the plaquette p and the function A(n(p), g) 
takes only two values, 0 and 1. A graph consists of edges and vertices, 
where an edge is an object which connects two vertices. Each edge has a 
color, green or red. Like vertices, edges are introduced here just for making 
visualization and description of the algorithm easier. The function 
A(n(p), g) is defined as 

A(n(p), g) 10 if every green edge connects vertices with the same value 
= and every red edge connects vertices with different values (2.10) 

otherwise 

Now, the problem is to find a proper set of graphs F and coefficients v(g) 
that satisfy (2.8). Once we obtain these, the actual simulation goes as 
follows: Starting from an arbitrary initial state n, we first assign a graph g 
to each plaquette p with the probability (2.9). Because of the definition of 
A, a green edge can be assigned only to a pair of parallel Pauli spins, 
whereas a red one can be assigned only to a pair of antiparallel Pauli spins. 
When we finish this graph assignment for every plaquette, we view the 
union of all these graphs as a single global graph. Then in the next step, 
i.e., the flipping process, we flip each cluster in the global graph with prob- 
ability 1/2. These two steps, graph assignment and cluster flipping, con- 
stitute one Monte Carlo step of the cluster algorithm. 

In the next section, we will discuss how we obtain F and the solution 
v(g) of Eq. (2.8). 

3. THE D E C O M P O S I T I O N  OF THE B O L T Z M A N N  F A C T O R  

As we discussed in I, the basis for a cluster Monte Carlo algorithm is 
the decomposition of the local Boltzmann weight w(n(p)) into a sum of 
terms each of which corresponds to a graph, namely, the right-hand side 
of (2.8). In terms of operators, (2.8) is equivalent to decomposing the 
operator 

p =- IPe~P I = pe,,ilp 

into the following form: 

p= ~ v(g) A(g), 
g ~ F  

v(g) >1 o (3.1) 
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where z~(g) is an operator whose matrix elements are A(n(p), g) and I)~[ 
stands for the operator whose matrix elements are the absolute values of 
those of )~. 

It is useful to consider a set of operators that can be written in the 
form similar to (3.1). We first define B as a set of operators which 
correspond to graphs, i.e., B = {z~(g) I g~F}.  Then we define O(B) as a set 
of operators which are linear combinations of elements of B with non- 
negative coefficients. It is obvious that this set is closed also with respect 
to the multiplication by a nonnegative real numbers and the addition of 
two elements. It is closed also with respect to the multiplication of two 
elements. [In other words, we have to choose the basis set B so that the 
set O(B) is closed.] We can view O(B) as a subset of the finite-dimensional 
linear space spanned by the basis set B. Therefore, we can represent every 
operator in O(B) as a finite-dimensional vector. At the same time, multiply- 
ing an operator ~'~ O(B) by another operator 1~ O(B) from the left can 
be viewed as some linear operation specified by ~> applied to an operator 
(i.e., a vector) )~. Therefore, we can represent every operator in O(B) also 
as a finite-dimensional matrix. With these definitions, (3.1) is written as 

/~= ~ o(A>)~, v(A~')~>0 (3.2) 
.~'EB 

which gives the vector representation v, whose elements are v(~), for the 
operator /~. Here, we used the same symbol v as in (3.1) for the vector 
elements, since there is one-to-one correspondence between graphs in F 
and the basis operators in B. Note that (2.8), (3.1) and (3.2) are equivalent 
to each other. 

In order to obtain this vector representation for/~, we first compute 
the vector representation of IA~,.,,I, 

IA~.~I= Y'. a , , . v ( ~ ,  a,,. v( 2)  >~ 0 (3.3) 
.~'EB 

Since the operator At," v influences only two Pauli spins, a~.,, and a~ ~, the 
problem is essentially the same as the S = 1/2 problem as far as the solution 
of (3.3) is concerned. It is sufficient to consider graphs defined on only four 
vertices, (k, i, v), (k,j, v), (k+ 1, i, lt), and ( k +  l, j ,  v) instead of graphs 
defined on 8S vertices. In other words, the solution of (3.3) is given by a 
direct product of the solution of the S =  1/2 problem and the identity 
operator for the dimensions related to neither one of the Pauli spins a~.~, 
and a~ v. Once we obtain (3.3), we can easily get the expression 

131--~ I~,~.,.I-- Y'. a ( ~ ,  a(~>~0 (3.4) 
p,  v f ( ~  B 
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where a(A ~) = ~ , .  v a,. v( f0.  Then, we can calculate the vector representation 
of (A)" (n = 2, 3, 4,...) by operating n -  1 times the matrix representation of 
A to the vector a. In this way, we can calculate the vector representation 
of the operator explAI up to any finite order in IAI by Taylor expanding 
explAI. Since the radius of convergence is infinite in this case, we should be 
able to obtain a good approximation by truncating the Taylor series at 
some order. In addition, P also belongs to O(B) and it is easy to obtain its 
vector and matrix representations. In fact, the vector representation is 
given by the simple formula 

1 
P =  ~ [(2S)!]2z](g) (3.5) 

ge l7  

where H is the set of graphs that consist of green vertical edges and have 
no vertex shared by more than one edge. In other words, H is the set of 
graphs which correspond to permutations of vertices. Therefore, the entire 
process of computing the vector representation of/~ can be done at least 
numerically. This procedure will be explained again in the next section with 
a concrete example. 

Now, our first problem is to obtain the coefficient a(g) in (3.3). As we 
discussed above, decomposition of A can be obtained through that of A~ ..... 
which is essentially an S = 1/2 problem. Therefore, we consider an S = 1/2 
problem with only two Pauli spins for which we do not need indices it or 
v. Here we consider an operator given by 

x x y |, A=--Ko + K,.ff ia ) + Kya, aj + K~a~a} (3.6) 

Since our Hilbert space in the present case is four dimensional, operators 
can naturally be expressed as 4 x 4  matrices. (Note, however, that this 
matrix representation is different from the one mentioned above.) Then, if 
we define 

KI = Ko + K:, K2-  Ko -  K:, 

the matrix that represents [A[ is 

-(i 
\K4  

g3~lgx--t-gy [, g4=lg.,.-g:,l (3.7) 

0 000 K2 K3 

K3 K2 
0 0 K l 

(3.8) 

We have assumed sufficiently large K 0 so that K1, K, >_-0. When the 
problem is mapped to a classical problem by the Suzuki-Trotter decom- 
position, each one of the matrix elements corresponds to a Boltzmann 
weight for a local state of a plaquette. From (3.8), it is obvious that only 
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I n  !I 2.N 3.M 4N 

Fig. 1. Eight possible states of a plaquette for S-- 1/2. 

8 among 16 states can have nonzero Boltzmann weights. These 8 states are 
shown in Fig. 1. If we number these states as shown in Fig. 1, the states a 
and # correspond to the same matrix element K ,  (a = 1, 2, 3, 4). we should 
also notice that we can regard the matrix in (3.8) as the local weight for 
an 8-vertex model. Therefore, the graph decomposition presented below 
gives cluster algorithms for the 8-vertex model. 

Now, we consider the local graph that we can use to decompose the 
Boltzmann operator. A local graph partially fixes relative orientations of 
spins. For example, two spins connected by a red bond point to opposite 
directions. After flipping clusters, two spins not connected by bonds can 
have either relative orientation, parallel or antiparallel. In the case of the 
X X Z  model, because of particle number conservation, we could use only 
six types of local graphs, i.e., G car) (a, r # 4 )  in Fig. 2. This was because if 
we assigned a graph other than these four to a plaquette, the local con- 
figuration resulting from flipping a cluster is not guaranteed to satisfy par- 
ticle number conservation. In the present case, instead of particle number 
conservation, the local configuration must satisfy a weaker condition, con- 
servation of the parity of the particle number. It can be expressed as 

mbl+mbr=--m,t+m,r mod2  (3.9) 

Here, rob/is the sum Z,, m~k. i.~,l, where (k, i) is the bottom-left corner of the 
plaquette. Other integers mbr, ma, and m,r are defined in a similar fashion 
for the bottom-right, top-left, and top-right corners, respectively. There are 
only ten local graphs that do not violate this parity conservation after flip- 
ping any set of clusters in the graph. These graphs are shown in Fig. 2. We 
denote these graphs as G (a~ (a, r =  1, 2, 3,4) as indicated in Fig. 2. 
Namely, in this case, 

F =  {G('~)ltr, r =  1, 2, 3, 4;a~<t} 
(3.10) 

B =  {3(G r I a, z =  1, 2, 3, 4; a~<r} 
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GO ~) G(i2) O 
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r.,~ (23) r (22) ~ O . . . . . .  .,O 

l ~ ! i i l I  O . . . . . .  -O 

�9 , ,  # S 

o " /  "o  

G(aa) o 

b 

Fig. 2. 

G(,~) 
I , ,  I 

Ten possible graphs of a plaquette for S =  1/2. 

In general, the graph G (~) can be assigned only to four states a, r, 6, 
and f (two states a and # if a = r). After flipping edges in the graph, the 
resulting state is one of these states. In other words, 

1, ~ = a , ~ = r  (3.11) 
A(~, G (~)) = A(~, G ('~)) = 0, otherwise 

or, in the matrix representation used for (3.8), A(G(~)), A(G(-'-'I), A(G(33)), 
and A(G (44)) are represented by 

(i ~176 Ooo o o~ il, (i ~176 oo o , o , i), (i ~176 oo o i o ' i), (i ~176 oo o~ o~ il 

respectively. Note also that 

z~(G("~)) = z~(G (`'')) + z1(G(m), 

(3.12) 

a # r  (3.13) 
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Therefore, using (3.8), we can simplify Eq. (3.4) as 

K~=~ al,~l, al~,~l>~O (3.14) 
r 

Here, a l ~  is the abbreviation for a( A( Gt'~l) ). We have identified (trr) with 
(ra). By expressing K~ as a column vector K and a t ~  as a matrix A, we 
can rewrite (3.14) as 

K = A 1  (3.15) 

where 1 is the four dimensional vector whose elements are all 1. Our 
problem is thus reduced to a problem of finding the 4 x 4 matrix A satisfy- 
ing (3.15) given a four-dimensional vector K with the constraint that 
a ~ / > 0  and a~a~ = a c ~  ~. 

In general, many solutions for this equation exist, although which 
solution gives the most effective algorithm has not been studied extensively. 
In I, we briefly described a procedure based on the maximum entropy 
method ~8~ for choosing a feasible solution when we have no reason for 
favoring one of them over the others. In what follows, we will see at least 
one meaningful solution exists for an arbitrary set of parameters K,.  We 
will also see that if and only if the largest among the K, 's  is not larger than 
the sum of all the others can we get a solution corresponding to a loop 
algorithm. 

In what follows, we consider the case K~ >/0 and KxK,, >10. In this 
case, by taking sufficiently large Ko, we have the inequality K~/> K2 t> 
K3/> K4 >i 0 because of the definition (3.7) of K, .  Once we get a solution 
in this case, we can get a solution in other cases as well simply by permut- 
ing indices. This is possible because (3.14) is invariant with respect to the 
index permutation. We should also note that the trivial solution 

a~,,~,~=K, ( a = 1 , 2 , 3 , 4 )  and a ~ l = 0  ( i f a : ~ r )  (3.16) 

does not yield any useful algorithm because in this case all vertices in the 
system are connected each other to form a single cluster. In such a case, 
only two states, the initial state and the reversed state, can be realized. 
It is also argued in I that we should minimize the possibility of two 
vertices being connected. Therefore, in general, we should avoid a solution 
in which ata,~'s are unnecessarily large, because G t'~'~ connects all four ver- 
tices of the plaquette and "locks" them into a single degree of freedom, 
whereas G ~ connects them only pairwise and leaves two degrees of 
freedom. For example, if we have a solution in which all~ > al221 > 0, we 
can get a better solution by increasing ac12~ by a~22~ and decreasing a ~  
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and at22~ by the same amount. (As a result, al22) becomes zero.) In other 
words, we can get a better solution by replacing G cl~ and G t221 by G 1~2~. 
From this example, it is clear that in the best solution, more than one al,~l 
cannot be nonzero. 

With these conditions, we now consider the following three cases: 
(1) K 2 + K s + K a < ~ K 1 ,  (2) K z + K 3 - K 4 < ~ K 1 < ~ K 2 W K 3 + K 4 ,  and (3) 
K, < ~ K , _ + K 3 - K  4. Equivalently, in terms of K,., K,,, and K~, (1) Ig_-I is the 
largest among Ig,.I, IK,,I, and Ig=l, (2) IK=I is the second largest among 
the three, and (3) [K:I is the smallest among the three. 

In case 1, obviously we cannot have a solution in which a~l~ is zero 
because 

0 < K I - K 2 - K 3 - K a < a ~ I t  I -  ~ a~or~<a~ll~ (3.17) 
a .  r = 2 ,  3 , 4  

This means that a loop algorithm solution does not exist. Considering the 
remark in the last paragraph, we should seek a solution in which 
at22) = a~33) = a~,~) = 0. Among such solutions, the one that minimizes a~ ~ ) 
is 

a~ll) = K1 -- K z - -  K 3 - K 4 (3.18) 

a~l,,~=K,, (for a = 2 ,  3, 4) (3.19) 

a ~ r ) = 0  (for a ~ l  and r # l )  (3.20) 

In cases 2 and 3, as we will see below, solutions exist for which all 
a~o~'s are zero. This kind of solution corresponds to a loop algorithm in 
which the clusters formed do not have any branching, i.e., they are merely 
loops. In what follows, we will consider only such solutions for the motiva- 
tion described above, although other solutions also exist. Given this condi- 
tion, there are only six independent variables to be determined with the 
four independent equations (3.14). Therefore, the solution space is in 
general two-dimensional. To be more specific, in the matrix form, the 
general solution of (3.15) for cases 2 and 3 must have the following form: 

A = A o + u U + v V  (3.21) 

where Ao is a special solution of (3.15), u and v are real numbers, and U 
and V are symmetric matrices which satisfy U1 = VI = 0. To be specific, 

U -  - 0 1 0 , V -  - 1  0 0 (3.22) 
1 0 -  1 0 0 -  

0 - 1  0 1 - 1  
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It is easy to see that 

Ao - 1  

0 2K 2 K1--K2+K3--K4 K , -K2  K3+K4 I 
2K2 0 0 0 

KI - K2 + K3 - K4 0 0 -- K, + K2 + K3 + K4 ] 
o ~  K I - K z - K 3 + K 4  0 -KI+Kz+K3+K4 

(3.23) 

satisfies (3.15). The condition a t ~  >/0 imposes a restriction on the range of 
(u, v). In case 2, we have 

O<~u, O<~v, u+v<<.�89 (3.24) 

In case 3, if we define AI=Ao+�89 and 
u ' - u -  �89 + K2 +K3 + K4), the general solution can be written as 

A = A~ + u'U+ vV (3.25) 

The conditions on (u', v) are 

0 ~< u', 0<~v, u'+v<~K4 (3.26) 

Thus, we have obtained the whole set of loop algorithm solutions of(3.15). 

4. AN EXAMPLE: THE X Y  MODEL WITH THE QUANTIZAT ION 
AXIS IN THE EASY PLANE 

4.1. The Algor i thm 

In this section, we discuss how the decomposition of the operator A of 
(3.4) presented in the last section is used for constructing a loop algorithm. 
As an example, we take the XY model with the quantization axis lying in 
the easy plane. This is equivalent to choosing J.,. = J .  = J>~ 0 and Jy = 0, 
while we use the conventional representation of Pauli matrices in which z 
components are diagonal matrices. This representation is useful not only 
for giving an example for what we have discussed, but also for some practi- 
cal purposes. Namely, with this representation, we can easily calculate the 
correlations between spin components in the easy-plane, i.e., z components 
in the present case. Since the singularity due to the Kosterlitz-Thouless 
transition is manifested most strongly in such correlations, using this 
representation is advantageous. On the other hand, we have to develop an 
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algorithm different from the one for the 6-vertex modeP 5) because with this 
representation the system no longer maps to a 6-vertex model even in the 
S = 1/2 case. 

Obviously, the XY model is a marginal case that belongs to both cases 
1 and 2 described in the last section. The solution is given by 

aII2) = K2= Ko-  K== K o -  K 

a~13) = K3 = IK,- + K,,I = K 
(4.1) 

acl4) = K4 = IKx--Kyl =K 

a ~ ) = 0  [ i f (az)  = (11), or cr :~ 1 and r ~ 1 ] 

Namely, 

131 = (Ko - K) 32 + K33 + K34 (4.2) 

an abbreviation for 3(G~t~)). Note that the linear space where  3~ is 
spanned by 32, 33, and 3 4 is closed with respect to the multiplication. 
Therefore, as the basis set B we can take {32, 33, 34}. To be more specific, 

3~2, =32, 3233=33, 3234=34 

3322=33, 3333=32, 3334- -34  (4.3) 

3432 = 34, 3433 = z~4, 3434 = 234 

Note that 

d~d~ = 3~d ~ (4.4) 

Using (4.3) and (4.4), we have 

e/1 ~ e (KO -K)~  2 eKz~3 eKJ4 

= [e(Xo-m 32 ] [cosh K3 2 q- sinh KJ3]  [A 2 -b l(e2K -- 1 ) 34] 

_- erO(e-r  cosh K32 + e - r  sinh KA3 + e K sinh K34) (4.5) 

This means that 

v~12)=e-XcoshK, v~13)=e-KsinhK, vt14)=ersinhK (4.6) 

in Eq. (2.8). (W~ omitted e K~ since it does not affect the resulting algorithm 
at all.) Therefore, Eq. (2.9) leads to 

p((ar)  l r ) = p ( ( a v ) l f ) - -  v~)  (4.7) 
~,a' Via'r) 

822/82/1-2-10 
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where p((az) I ~) stands for p(Gt'~) I ~). More explicitly, 

p((12) l 1 )=e  -2K, p((13) l 1 )=e-2KtanhK,  

p((14) [ 1 ) = tanh K (4.8) 

p((12) I 2 )=1 ,  p((13) l 3 ) = I ,  p((14) 14)=1 

p((ar) I ~ ) = 0  (if ( : / : a  and ~ :/:r) (4.9) 

and 

p((o'r) I ~)= p((o'z) I ~) (4.10) 

For the systems with spin S larger than 1/2, we can follow essentially 
the same line to obtain the labeling probability. In other words, first we 
find a set of basis operators B that spans a linear space closed with respect 
to the multiplication, then calculate the vector representation of exp ].4[ in 
terms of these basis operators. However, we cannot in general simplify this 
calculation as we did in the case of S =  1/2, because commutativity (4.4) 
does not hold for the basis operators in the case of S >  1/2. We can still at 
least numerically calculate the expansion of exp [.4[ as discussed in I by 
Taylor series expanding exp ].41 in terms of [.4]. Since the radius of con- 
vergence circle of this Taylor expansion is infinity, we should be able to get 
a good approximation if we truncate the series at the finite but sufficiently 
high order. 

For example, in the case where S =  1, 3",.=3"==J~>0 and J , ,=0,  
similar to the S = 1/2 case, the only graphs we have to take into account 
are those which connect vertices pairwise. Therefore, there are 
8!/(244!) = 105 distinct graphs to consider. In other words, 105 operators 
that correspond to these graphs constitute the basis set B. The product of 
two arbitrary basis operators is another basis operator except for the 
numerical factor 2" due to inner closed loops as discussed in I. Namely, for 
two arbitrary elements .~ and 1~" of B, another element 2,(.~, ~ of B and 
an integer re(f(, ~ exist that satisfy 

,t~]~= 2 ''";e" ~2(A >, ~ (4.11) 

It is tedious but  straightforward to calculate m(.,~, ~ and 2(, i  >, I2) for all 
possible pairs of ~ and • and prepare a table similar to (4.3). Once we 
have this table, we can calculate the product of two arbitrary operators in 
the linear space O(B) easily. To be specific, for two operators in O(B), 
~q=Y~ss(.(9.~ and fr=E.e~Bt(Xof(, we have 

~ ' =  ~ s(.~)/(1~.~1~'= ~ s(A~t(~2""e'e'~.(~, ~ = ~ u ( A ~ ) . ~  (4.12) 
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where 

u(I8/) =- ~ s(fO t( ~ 2 "'(z ~ (4.13) 

In other words, multiplying T by ~ from the left is equivalent to multiply- 
ing a vector defined by 

by a matrix 

(TLe - t(A ~) (4.14) 

(S).e. ~ -  ~ s( ffV) 2 "(w" ~ (4.15) 
W 

~= 2( W, ?) 

from the left. Therefore, since P and ]A[ are elements of O(B), calculating 
the vector representation of/~ [AI"P in terms of the basis operators is com- 
putationally straightforward. Hence, P(exp [A])P can be calculated at least 
numerically. In fact, the calculation described here can be simplified 
significantly if we take symmetry into account. 

There is yet another way of calculating/5(exp IAI)P, namely, explicitly 
solving the linear algebraic equation (2.8) with respect to v(g). It is obvious 
that the solution obtained by the former method is unique and satisfies 
(2.8), although the solution of (2.8) is not necessarily unique. 

4.2. Comparison of the Conventional Algorithm and the 
Loop Algorithm 

We applied the loop algorithm described in the last subsection to the 
X Y  model on a square lattice with periodic boundary condition. At the 
same time, we applied the conventional algorithm to the same system to 
compare the efficiency of the two algorithms. Ding and Makivi619~ reported 
that this system undergoes a Kosterlitz-Thouless-type phase transition at 
T ~  0.35. Therefore, we expect critical slowing down for the conventional 
algorithm. We also expect another slowing down as the imaginary time 
spacing becomes smaller with a fixed temperature, as happened (4~ in the 
one-dimensional S = 1 antiferromagnetic Heisenberg model. 

The details of the conventional algorithm used in this paper are 
presented in the appendix. The conventional algorithm is the same as the 
one used in ref. 10 except that we included "diagonal" flips to make the 
simulation ergodic. (As we show in the appendix, the algorithm in ref. 10 
is not completely ergodic, although the effect of this nonergodicity may not 
be significant.) We remark here that one usually needs to be concerned 
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about the ergodicity in the conventional algorithm and that the actual 
computer programs for the conventional algorithm tend to be complicated 
because to ensure ergodicity one has to incorporate several different 
updates in a nonunified fashion. If we have four different kinds of flips, we 
usually write four different subroutines. On the other hand, the cluster 
algorithm is less likely nonergodic because in most cases the cluster 
algorithm includes a wider class of updates than does the conventional algo- 
rithm. As discussed in I, we can even prove ergodicity for the cluster 
algorithm in some cases. In addition, in a cluster algorithm, all kinds of 
updates can be realized in a unified fashion in actual computer programs. 

We calculated the integrated autocorrelation time defined t t~ by 

bvx(b)  
zx(b)  - - -  (4.16) 

2Vx( 1 ) 

where vx(b) is the variance of the distribution of the bin averages with 
the bin length of b. This quantity should be equal to the integrated 
autocorrelation time defined by 

r~. ~'~- ~ (x(r) x(0))M~/(x(0) x(0))~c 
t = 0  

(4.17) 

in the limit of b --. oo. Here, X(t)  is an arbitrary physical quantity measured 
at the tth Monte Carlo step. As a function of increasing b, rx(b)  is 
generally a nondecreasing function. Upto a certain point, say b ,(cor) ~ X  , 

rx(b) increases and after this point, roughly speaking, it takes the constant 
.r(int) ..~ ~.(cor) W e  value ,(i,t) In a typical simulation that we have done, ~x ~ x  - 

regard ~.~r ~X as the number of Monte Carlo steps needed for decorrelating 
two measurements of X completely. In order to obtain an estimate of rx(b) 
with a small statistical error, we had to perform a simulation much longer 
than b in general. Therefore, in case the total number of Monte Carlo steps 
T is larger but not much larger than ~.cor) it is difficult to judge if the func- 
tion zx(b)  has reached the plateau because the plateau is blurred by large 
statistical errors. Hence, we often cannot estimate z~.,t) precisely. In 
such cases, we took rx(b)  at the largest bin length b where a statistically 
precise estimate is still possible and regarded it as a lower bound of 
T(int) x = ~x(~) .  We calculated rx(b) with magnetization [ M =  ~R S~(R)], 
susceptibility [M2/N] ,  and nearest neighbor spin-spin correlations 
[El~ S~(R) S~(R + ~)/N (o~ = x, y, z)]. 

As for the conventional algorithm, we found that the autocorrelation 
time of the nearest neighbor spin-spin correlations for the in-plane spin 
components (i.e., x and z components) is equal to or larger than that for 
the susceptibility. On the other hand, the autocorrelation time for the y 
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Table I. The Integrated Autocorrelation Times of the Conventional Algorithm 
for the Uniform Magnetization and the Susceptibility a 

Magnetization Susceptibility 

Ar fl L = 4  L = 8  L = I 6  L = 4  L = 8  L = I 6  

1.000 1 0,534(11) 0.499(07) 0.511 (05) 0.550(10) 0.504(06) 
1.000 2 10.38(60) 27.8(17) 49.7 (LB) 5.67(51) 9.60(68) 
1,000 4 32.7(26) 139.6(54) 496(LB) 16.8(11) 51.3(24) 

0.500 1 0.768(23) 0.700(31) 0.741 (32) 0.647(37) 
0.500 2 10.6(15) 24.8(14) 5.68(59) 12.1 (11) 
0.500 4 51.1 (LB) 26.6(16) 

0.250 1 0,745 (30) 0.678 (20) 0.757 (09) 0.633 (24) 
0.250 2 13.26 (36) 28.70 (86) 10.89 (22) 35.8 (33) 
0,250 4 115.4(52) 53.2(24) 

0.125 1 0.727(08) 0.725 (25) 1.079(62) 0.662(10) 
0.125 2 14.93(67) 30.7(3) 30.6(11) 115 (LB) 
0.125 4 231 (LB) 144.0(84) 

0.498 (06) 
20.3 (LB) 

242 (LB) 

~ The system size is L x L. The figures in parentheses are statistical errors (one standard devia- 
tion), LB indicates that the value shown is the lower bound. 

components is smaller than that for the susceptibility in most cases we 
studied. In Table I, we show the autocorrelation times of the uniform 
magnetization and the magnetic susceptibility for the conventional algo- 
rithm. 

As we can clearly see, the correlation times for both the quantities 
show the slowing down as the temperature becomes low. It is also clear 
that for lower temperatures ( f l = 2 , 4 ) ,  the autocorrelation time grows 
rapidly as the system becomes larger. We consider this growth a finite size 
effect for fl = 2 since this temperature is higher than the critical temperature 
f l w r  ~ 2.9. Since fl = 4 is below the critical temperature, we would observe 
the growth of the correlation time for larger systems. The slowing down 
due to the increment of the Trotter number is also observed. But it is 
significant only in the case of fl = 2 and 4. 

On the other hand, we observed no clear evidence for any slowing 
down in the case of the loop algorithm. The autocorrelation times for the 
magnetization are 0.5, as they should be, with statistical errors of a few per- 
cent. The aut6correlation times for the susceptibility are also almost con- 
stant and are around 1.0 or less (see Table II). 

We should stress that the cluster algorithm has another significant 
advantage besides the reduction of the autocorrelation times, namely the 
improved estimators. ~" ~3~ In this paper, we calculated susceptibility by 
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Table II. The Integrated Autocorrelation Times of the 
Loop Algorithm for the Susceptibility ~ 

Ar fl L=4 L=8 L=16 

1.000 1 0.883 (29) 0.661 (23) 
1.000 2 1 .004(37)  1.093(44) 
1.000 4 0.919 (29) 0.952 (64) 

0.500 1 0.901 (40) 0.589 (23) 
0.500 2 1.033 (37) 1.077 (61) 
0.500 4 0.920 (30) 

0.250 1 0.772 (25) 0.603 (15) 
0.250 2 0.973 (40) 1.085 (40) 
0.250 4 0.986 (32) 

0.125 1 0.800 (17) 0.629 (22) 
0.125 2 0.991 (29) 1.138 (50) 
0.125 4 0.968 (26) 

0.529 (12) 
1.251 (84) 
0.978 (30) 

a See footnote to Table I. 

using an improved estimator. It is well known that for the Ising model the 
improved estimator for the magnetic susceptibility is simply the average 
cluster size. In the present case, too, the improved estimator of the 
magnetic susceptibility for z components is proportional to the average 
cluster size. To be more specific, 

1 
(4.18) 

In Table III,  we list the three sets of estimates for the susceptibility, i.e., the 
ones obtained with the conventional algorithm, the ones with the loop 
algorithm, and the ones with the loop algorithm and the improved 
estimator. For smaller values of At, the magnitude of the statistical errors 
for the conventional algorithm relative to that for the loop algorithm 
without the improved estimator tends to be larger. We can see that the dif- 
ference between the statistical errors for the conventional algorithm and 
those for the loop algorithm without the improved estimator is consistent 
with the estimated integrated autocorrelation times shown in Tables I and 
II. We also see that the improved estimator further reduces the statistical 
error considerably. Since using the improved estimator is equivalent to 
averaging over 2 Nc different configurations, where Nc is the number of 
clusters, its advantage is more significant when Arc is larger, i.e., at higher 
temperatures. On the other hand, the reduction of the autocorrelation time 
by using the loop algorithm is less significant at higher temperatures. 
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There fo re ,  t h e  t w o  a d v a n t a g e s  o f  t he  l o o p  a l g o r i t h m ,  i.e., t h e  r e d u c t i o n  in 

t he  c o r r e l a t i o n  t imes  a n d  t h e  r e d u c t i o n  in  t he  v a r i a n c e  o f  t he  t h e r -  

m o d y n a m i c  d i s t r i b u t i o n  b y  t he  i m p r o v e d  e s t i m a t o r s ,  a re  c o m p l e m e n t a r y  to  

e a c h  o the r .  

Table III. The Estimated Values for the Susceptibility and the Statistical Error 
in the Case of AT= 1 ~ 

p L Algorithm NMcs Ni,t < M 2 >/N Error 

1 4 C 8,192 1 3.750 0.011 
1 4 L 8,192 1 3.762 0.018 
1 4 I 8,192 1 3.781 0.008 

1 8 C 8,192 1 4.207 0.021 
1 8 L 8,192 1 4.196 0.016 
1 8 I 8,192 1 4.193 0.007 

1 16 C 8,192 1 4.214 0.019 
1 16 L 8,192 1 4.205 0.018 
1 16 I 8,192 1 4.202 0.004 

2 4 C 32,766 4 7.720 0.030 
2 4 L 8,192 1 7.726 0.024 
2 4 I 8,192 1 7.712 0.012 

2 8 C 32,768 2 22.779 0.158 
2 8 L 8,192 1 22.621 0.086 
2 8 I 8,192 1 22.630 0.055 

2 16 C 32,768 4 57.588 0.473 
2 16 L 8,192 1 57.135 0.265 
2 16 I 8,192 I 57.075 0.153 

4 4 C 32,768 2 7.931 0.059 
4 4 L 8,192 1 7.927 0.027 
4 4 I 8,192 1 7.927 0.014 

4 8 C 262,144 16 28.534 0.148 
4 8 L 8,192 1 28.866 0.091 
4 8 I 8,192 1 28.817 0.050 

4 16 C 262,144 21 103.170 1.404 
4 16 L 8,192 1 103.161 0.362 
4 16 I 8,192 1 103.334 0.225 

a For each set of entries the top, middle, and bottom figures are the estimates by the conven- 
tional algorithm *(C), the loop algorithm (L), and the loop algorithm with the improved 
estimator (I), respectively. Each simulation consists to ten sets where one set consists of 
NMC s Monte Carlo steps for measurements with a sufficiently large number of additional 
Monte Carlo steps for equilibration. A measurement of susceptibility is done every Nin t 

Monte Carlo steps. The last column is the estimate of statistical error in one standard 
deviation. 
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The difference in the overall efficiency is striking. For example, in the 
case of A t =  1.0, f l=4 ,  and L =  16, the simulation by the conventional 
algorithm is 32 times longer than the loop algorithm simulation. However, 
the conventional algorithm yields a statistical error six times larger than 
that of the loop algorithm simulation with the improved estimator. Since 
the statistical error is proportional to the reciprocal of the square root of 
the total number of the Monte Carlo steps, this difference in the efficiency 
is roughly equivalent to a factor 32 x 62/r ~ 103/r in terms of the computa- 
tional time, where r is the computational time per one Monte Carlo step 
of the loop algorithm divided by that of the conventional algorithm. The 
factor r strongly depends on the detail of the software and the hardware. 
In our particular case, 2 < r < 4. Therefore, even for the small systems 
studied here, the difference is more than two orders of magnitude in real 
CPU time. 

5. C O N C L U S I O N S  

In this paper, we presented how to construct a cluster algorithm for a 
model described by the X Y Z  Hamiltonian. The algorithm for the special 
case of S =  1/2 can be viewed as a cluster algorithm for the 8-vertex model 
as well as the algorithm for the quantum spin systems. The efficiency of the 
new algorithm is examined for the S = 1/2 X Y  model on a square lattice. 
It is found that the integrated autocorrelation times of the new algorithm 
for various physical quantities do not show any significant slowing down, 
whereas the conventional algorithm suffers from slowing down due to the 
low temperature and the small imaginary time spacing. Even for the small 
system sizes ( L ~  16) studied in this paper, the difference between the 
autocorrelation times for the two algorithms can be three orders of 
magnitude, and this difference is very likely much larger for larger systems. 
In addition, we observed that we can further reduce the statistical error by 
measuring quantities through improved estimators. 

A P P E N D I X .  THE C O N V E N T I O N A L  A L G O R I T H M  

The conventional algorithm used in this paper is the same as the one 
in ref. 10 except that we added so-called "diagonal" loop flips. The algo- 
rithm in ref. 10 consists of three types of updates: (1) local "space" flips, (2) 
local "time" flips, and (3) global flips in the time direction., These flips, 
except for the diagonal flips, are described in ref. 12. It seems that in the 
simulation described in ref. 10 the second global flip in ref. 12, i.e., global 
flips in the space directions, were not performed. In the case of,the Heisen- 
berg model, these global spatial flips are needed to make the algorithm 
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ergodic. In other words, the other three types of  updates  do not change the 
total  winding number  of  the world lines. Therefore, the simulation without 
the spatial global flips is not  ergodic. In the case of  the X Y Z  model,  the 
local conservat ion rule of  the magnet iza t ion does not  hold. This means that  
the world lines are no longer well defined. Therefore, it is not  straight- 
forward to see if there are conserved quantities. In fact, however,  conserved 
quantities exist if we do not  include the spatial global flips or something 
equivalent to it. To  see this, let us cut the system by a plane parallel to the 
y and t axes and consider the cross section. Then, we take half  of  the lattice 
points on this cross section whose time coordinates  k are odd (see Fig. 3). 
We refer to the set of  these lattice points as H. Now,  we define Px as the 
pari ty of  the total  number  of  lattice points in H on which the spins are 
"up" (i.e., n tk .~= 1). The P,. does not  depend on the location where the 
plane cuts the system. We claim that  P,. is not  changed by local spatial 
flips, local tempora l  flips, or global t empora l  flips. The reason is simply 

Fig. 3. A cross section cut by a plane parallel to the yz plane. The set H is defined as the 
set of lattice points marked by open circles. 



152 Kawashima 

that the intersection of H and the set of lattice points that are affected by 
one of those flips always consists of an even number of lattice points. Since 
we can define P,, in a similar fashion, our claim implies that there are at 
least two conserved numbers for the whole system in (2 + l)-dimensional 
systems. 

Of course, the above definition of Px and Py is valid also for X X Z  
models for which the local conservation rule for the magnetization applies. 
It is easy to see that P= (0~ = x ,  y) equals the parity of the total winding 
number in the 0c direction in the case of the X X Z  model. The above argu- 
ment can be easily generalized to other dimensions and different Suzuki- 
Trotter decompositions by changing the definition of H appropriately. 

In this paper, we used global diagonal flips instead of the global spa- 
tial flips to make the algorithm ergodic. To be specific, a diagonal flip in 
the x direction is a flip of a loop which is constructed by the following 
rules. ( l)  Take a lattice point (x, y, t), where t = l, 2 ..... M specifies the 
imaginary time coordinate. (2) If (x, y, t), (x + 1, y, t), (x + l, y, t + 1 ), and 
(x, y, t + 1 ) are four corners of a "shaded" plaquette, take (x + l, y, t + 1 ) 
as the next point. Otherwise, take (x, y, t + l) instead. (3) Repeat 2 until 
the current x coordinate coincides with the x coordinate of the starting 
point. (4) Take (x, y, t + l) as the next point. (5) Repeat 4 until the current 
point coincides with the starting point. In a similar fashion, we can define 
diagonal flips in the y direction. In the actual simulations, for every Monte 
Carlo step, we included one set of diagonal flips in both x and y directions. 
Here, "one set" of diagonal flips in the x direction means the updates of all 
diagonal loops in the x direction whose starting points are given by (0, y, t) 
(y - -  1, 2 ..... L; t = 4, 8, 12 ..... M). (Note that in the present case, the hyper 
lattice is periodic with period of 4 in the imaginary time direction.) 
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